Diamond Analytics, a US Synthetic company, expands the existing range of analytical capabilities in separation science by providing diamond-based solutions that allow for the exploration of novel chemistries.

As a result of breakthroughs in diamond technology, Diamond Analytics’ High-Performance Liquid Chromatography (HPLC) columns offer expanded pH range capability (1-13), elevated temperature ranges, increased longevity and novel selectivity, without compromising efficiency. Specifically, Diamond Analytics columns can be run in extreme conditions of pH and temperature. With longevity in mind, these columns can be regenerated for repeat use—leading to a longer, more productive life and increased total cost savings.

• Parent company founded 1978
• 700+ employees
• Diamond Analytics founded in 2006
• Products categories: HPLC & TLC
Physico-chemical properties of some materials used in chromatography (non-porous, 25°C)

<table>
<thead>
<tr>
<th>Property</th>
<th>Diamond</th>
<th>Polystyrene</th>
<th>Alumina</th>
<th>Silica</th>
<th>Zirconia</th>
<th>Graphite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, g/cm³</td>
<td>3.51</td>
<td>1.05</td>
<td>3.72</td>
<td>2.2</td>
<td>6.0</td>
<td>1.80</td>
</tr>
<tr>
<td>Thermal linear expansion coefficient, α x 10⁻⁶ /K</td>
<td>0.05</td>
<td>72</td>
<td>8.1</td>
<td>0.55</td>
<td>10.3</td>
<td>1.2-8.2</td>
</tr>
<tr>
<td>Thermal conductivity, W/m·K</td>
<td>2320</td>
<td>0.08</td>
<td>18</td>
<td>1.38</td>
<td>2.0</td>
<td>85</td>
</tr>
<tr>
<td>Hardness, Kg/mm²</td>
<td>9000</td>
<td>9-16</td>
<td>1100</td>
<td>460</td>
<td>1300</td>
<td>40</td>
</tr>
<tr>
<td>Volume resistivity, ohm·cm</td>
<td>10¹⁶-10¹⁸</td>
<td>>10¹⁶</td>
<td>>10¹⁴</td>
<td>>10¹⁰</td>
<td>>10¹⁰</td>
<td>(5-30)-10⁻⁶</td>
</tr>
<tr>
<td>Thermal stability, °C</td>
<td>700</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>500-600</td>
</tr>
</tbody>
</table>

Mono-crystalline synthetic diamond enriched in ¹²C isotope (99.9%) has the highest thermal conductivity of any known solid at room temperature: 3,320 W/(m·k), two hundred times more than stainless steel 316.

FLARE Columns

FLARE Wide Pore (WP) C18
Works primarily in reversed phase mode due to interaction of proteins with C18 ligands. Optimal pore size and permeability allows for retention of small to large-sized proteins (up to 500 kDa). Has been effectively used in analyzing mAbs, ADCs, insulin, hemoglobin, etc.

FLARE C18 Mixed Mode (MM):
Operates primarily in a reversed-phase and anion exchange mode depending on the pH of the mobile phase. At low to medium pH, the column is great for analysis of neutral compounds, proteins, and acids. At high pH, the column is great for analysis of bases with good peak shape.

FLARE C18+:
Exhibits a permanent positive charge regardless of the pH of the mobile phase. It is good for the analysis of polar molecules (including carbohydrates and sugars), neutral compounds, and anionic species.

FLARE HILIC:
Has a hydrophilic surface and is able to retain very polar molecules at all pH conditions. Works well for the analysis of sugars, nucleobases, nucleotides, etc.
Intact & Digested mAb Separations

Column Name: FLARE WP C18
Column Dimensions: 2.1 x 100 mm
HPLC System: Acquity I-Class UPLC system
Injection Volume: 0.5 μl
Detection: FLD (280 - 360 nm)
Flow Rate: 0.15 ml/min
Mobile Phase: A: 0.5% TFA in H₂O, B: 0.5% TFA in ACN
Gradient: Time (mins) %A %B
0.00 75 25
10.00 67 33
10.20 75 25
12.00 75 25 end
Temperature: 90°C
Analyte: Intact Rituximab (MW= 144 kDa), Intact Cetuximab (MW= 146 kDa)

Sample Preparation:
- Intact mAb aqueous solutions were prepared to a concentration of 2 mg/ml.
- Reduction of mAbs were performed by addition of 0.05 mg of dithiotreitol (DTT) to a 100 μl solution of mAb stock solution. The solution was incubated at 40°C for 60 minutes.
- Digestion was done by addition of 50 μl of papain (1.0 mg/ml) to the reduced sample. The solution was incubated at 40°C for 5 hours.

Sample Characterization:
- Cetuximab: The reduction process yielded two main fragments, the light chain (LC) of ca. 25 kDa and the heavy chain (HC) of ca. 50 kDa.
- Rituximab: The reduction and digestion processes yielded three main fragments of ca. 25 kDa, namely the native LC, the single-chain Fc (sFc) and the Fab portion of the HC (Fd)
“I’m looking for a column that...is applicable for separating a wide range of analytes, offers complementary selectivity compared with other phases,...can be used over a wide pH range, and exhibits excellent column-to-column reproducibility.”

Pharmaceutical Customer

“The quality of the separation was similar to the ones achieved using state-of-the-art silica-based materials.”

Fekete et. al., Journal of Pharmaceutical and Biomedical Analysis
Basic Particle Prep and Chemistry

PAAm → Nanodiamond → PAAm

NH₂

Nanodiamond

PAAm → Nanodiamond → PAAm

NH₂

Nanodiamond

PAAm → Nanodiamond → []ₙ → Functionalization

NH₂

NH₂

NH₂
FLARE Wide Pore C18

- Total particle diameter: 3.6 μm
- Core diameter: 3.4 μm
- Shell radius: 0.1 μm
- Surface area: 10 m²/g
- Pore diameter: 250 Å
- Loading capacity: 150 μg (4.6 x 33mm, BSA)
- pH stability: 1 – 13
- Temperature stability: 100°C
- Permeability: 9.8 x 10⁻¹¹ m²
- Porosity: 40%

FLARE C18MM, C18+, HILIC

- Total particle diameter: 3.6 μm
- Core diameter: 3.4 μm
- Shell radius: 0.1 μm
- Surface area: 20 m²/g (30 m²/g silica equivalent)
- Pore diameter: 120 Å
- Ion-exchange capacity: 10 – 20 μeq/col (2.1 x 50mm, UTAS)
- Loading capacity: 8 μg (4.6 x 33mm, Amitriptyline)
- pKa of surface amine: ~10
- Log P (Hydrophobicity): 0.4 ca.
- pH stability: 1 – 13
- Temperature stability: 100°C
Hydrophobic Subtraction Model (HSM) Plot

Plot below shows comparison of FLARE C18MM column to over 600 silica based phases. The comparison is made on the basis of hydrophobicity, permeability and ion exchange properties as can be seen the FLARE column (depicted by the red dot) stands apart. Selectivity (α) of this column is different from that of traditional silica-based C18 columns.

Particle Size Distribution

The exacting lean manufacturing processes that we employ ensure that from batch-to-batch and column-to-column we have excellent reproducability. We use BET, SEM and PSD analysis to characterize each batch of material we make. FLARE particles have tight particle size distribution (d90/d10 < 1.2), resulting in high packing density and high permeability.
FLARE columns have high efficiency

Retention Mechanisms (FLARE C18 MM)

By virtue of our unique particle configuration and chemistry, FLARE C18MM is as hydrophobic as a typical silica-based C18 column. Additionally, due to unique selectivity, the column is preferred for separations of isomers and critical pairs.

Experimental conditions: Mobile phase: 10% ACN / 90% water, 10mM phosphate / phosphoric acid or phosphate / NaOH; flow rate: 0.2 ml/min; isocratic injection volume: 2 μL; detection: 254 nm; temperature 30 °C.
Trypsin inhibitor from Glycine max (soybean) (MW: 20.1 kDa)

- Column Name: FLARE WP C18
- Column Dimensions: 4.6 x 100 mm
- Column ID: 16636.1-3
- HPLC System: Agilent 1200
- Injection Volume: 5.0 μl
- Detection: UV at 230 nm
- Flow Rate: 1.0 ml/min
- Mobile Phase: A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 80 ml ACN, 20 ml H₂O, 0.1 ml TFA
- Gradient: Time (mins) %A %B
 - 0.00 100 0
 - 12.00 60 40
 - 12.01 100 0
 - 20.00 100 0 end
- Temperature: 55 °C

Histone from calf thymus II-A (MW: 11-21 kDa)

- Column Name: FLARE WP C18
- Column Dimensions: 4.6 x 100 mm
- Column ID: 16636.1-3
- HPLC System: Agilent 1200
- Injection Volume: 5.0 μl
- Detection: UV at 230 nm
- Flow Rate: 1.0 ml/min
- Mobile Phase: A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 80 ml ACN, 20 ml H₂O, 0.1 ml TFA
- Gradient: Time (mins) %A %B
 - 0.00 100 0
 - 12.00 60 40
 - 12.01 100 0
 - 20.00 100 0 end
- Temperature: 35 °C
Deoxyribonuclease I from bovine pancreas (MW: 39 kDa)

- Column Name: FLARE WP C18
- Column Dimensions: 4.6 x 33 mm
- Column ID: 16636.2-3-1
- HPLC System: Agilent 1200
- Injection Volume: 5.0 μl
- Detection: UV at 230 nm
- Flow Rate: 1.2 ml/min
- Mobile Phase: A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 80 ml ACN, 20 ml H₂O, 0.1 ml TFA
- Gradient: Time (mins) %A %B
 - 0.00 100 0
 - 3.00 30 70
 - 3.01 100 0
 - 6.00 100 0 end
- Temperature: 30, 55, 60 °C

Ribonuclease A from bovine pancreas (MW: 13.7 kDa)

- Column Name: FLARE WP C18
- Column Dimensions: 4.6 x 33 mm
- Column ID: 16636.2-3-1
- HPLC System: Agilent 1200
- Injection Volume: 5.0 μl
- Detection: UV at 230 nm
- Flow Rate: 1.2 ml/min
- Mobile Phase: A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 80 ml ACN, 20 ml H₂O, 0.1 ml TFA
- Gradient: Time (mins) %A %B
 - 0.00 100 0
 - 3.00 30 70
 - 3.01 100 0
 - 6.00 100 0 end
- Temperature: 30, 55, 60 °C
Hemoglobin human (MW: 60.4 kDa)

- **Column Name:** FLARE WP C18
- **Column Dimensions:** 4.6 x 100 mm
- **Column ID:** 16636.1-3
- **HPLC System:** Agilent 1200
- **Injection Volume:** 5.0 μl
- **Detection:** UV at 230 nm
- **Flow Rate:** 1.0 ml/min
- **Mobile Phase:** A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 80 ml ACN, 20 ml H₂O, 0.1 ml TFA
- **Gradient:**

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>14.00</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>14.01</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>22.00</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
- **Temperature:** 35 °C

Hemoglobin Bovine (MW: 67 kDa)

- **Column Name:** FLARE WP C18
- **Column Dimensions:** 4.6 x 100 mm
- **Column ID:** 16636.1-3
- **HPLC System:** Agilent 1200
- **Injection Volume:** 5.0 μl
- **Detection:** UV at 230 nm
- **Flow Rate:** 1.0 ml/min
- **Mobile Phase:** A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 80 ml ACN, 20 ml H₂O, 0.1 ml TFA
- **Gradient:**

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>%A</th>
<th>%B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>14.00</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>14.01</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>22.00</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
- **Temperature:** 35 °C
High and Low pH Stability

Apo-Transferrin Human (MW: ~80 kDa)

Column Name: FLARE WP C18
Column Dimensions: 2.1 x 50 mm
Column ID: 16636.1-5
HPLC System: Agilent 1290
Injection Volume: 1.0 μl
Detection: UV at 280 nm
Flow Rate: 1.0 ml/min
Mobile Phase: A: 5 ml ACN, 95 ml H₂O, 2.0 ml TFA (pH 0.7); B: 95 ml ACN, 5 ml H₂O, 2 ml TFA
Gradient: Time (mins) %A %B
0.00 100 0
10.00 0 100
10.01 100 0
12.00 100 0 end
Temperature: 60 °C

BSA (MW: 66.5 kDa)

Column Name: FLARE WP C18
Column Dimensions: 2.1 x 50 mm
Column ID: 16636.4-5
HPLC System: Agilent 1290
Injection Volume: 1.0 μl
Detection: UV at 280 nm
Flow Rate: 1.0 ml/min
Mobile Phase: A: 5 ml ACN, 95 ml H₂O, 0.1 ml TFA; B: 95 ml ACN, 5 ml H₂O, 0.1 ml TFA
Gradient: Time (mins) %A %B
0.00 100 0
5.00 0 100
5.01 100 0
6.00 100 0 end
Temperature: 60 °C

Column was rinsed with 60 column volumes of 1:1 H₂O/MeOH containing 0.1 M NaOH after every 10 injections of BSA using the method below.
Separation of Proteins by MS and UV

Instrument: Agilent 1260 with Agilent 6320 TOF LC-MS, + mode

Column Name: FLARE WP C18, 2.1x100mm, 3.6μm (ID: FW36-21100)

Column Temp: 35°C

Analyte: Ferritin (MW: 474 kDa)

Mobile phase:
- **Solvent A:** 0.1% TFA
- **Solvent B:** 0.0875% TFA in ACN

Gradient Conditions:
- 0 min 100% A
- 8 min 0% A, 100% B
- 8.01 min 100% A
- 20 min end

Flow rate: 0.4ml/min

Injection: 6.0μl

Detection: MS

Due to low bleeding, FLARE columns are MS compatible. They can be used with a variety of mobile phases, from 100% aqueous to 100% organic conditions.

Our unique pore structure allows for separation of large intact proteins up to 500 kDa.

Instrument: Agilent 1200

Column Name: FLARE C18 MM, 4.6x33mm, 3.6μm vs. Silica 4.6x50mm, 2.6μm

Column Temp: 55°C

Analyte: (1) Apo-transferrin (MW: 80 kDa) (2) BSA (MW: 66.5 kDa)

Mobile phase:
- **Solvent A:** 50mlACN +950mlwater+2mlTFA
- **Solvent B:** 1000 ml ACN + 2 ml TFA

Gradient Conditions:
- 0 min 100% A
- 4 min 10% A, 90% B
- 4.1 min 100% A
- 10 min end

Flow rate: 1.0ml/min

Injection: 2.0μl, ca. 0.2mg/ml in Solvent A

Detection: UV at 230 nm

A longer commercial silica-based column with smaller particles is unable to resolve impurity between Apo-transferrin and BSA peaks.
FLARE HILIC Column

- Amino-diol functionalized hydrophilic surface
- Can retain highly polar molecules in high organic mobile phases at various pH and temperature conditions
- Applications include separation of nucleobases and nucleotides, sugars, beta blockers, polar active pharmaceutical ingredients (APIs), etc.
- Very unique column selectivity

Column Name: FLARE HILIC (ID: 1090, 4.6 x 33mm, 3.6 μm)
Mobile Phase: A: 0.85% H₃PO₄; B: 0.85% H₃PO₄ in ACN
95% B to 80% B in 3 mins
Temp: 50 °C
Flow Rate: 1.0 ml/min

Column Name: FLARE HILIC (ID: 1090, 4.6 x 33mm, 3.6μm)
Mobile Phase: A: 0.85% H₃PO₄ (22%); B: ACN (78%)
Temp: 25 °C
Flow Rate: 0.8 ml/min
Separation of Steroids

Instrument: Agilent 1200
Column Name: FLARE C18 MM, 4.6x33mm, 3.6μm
Column Temp: 30°C
Mobile Phase: 345ml THF + 655ml H₂O + 5ml DCM + 0.5ml EDA + 3.2ml Acetic Acid
Flow Rate: 1.0ml/min
Injection: 1.0μl
Detection: UV at 280nm

Separation of Amphetamines

Instrument: Agilent 1200
Column Name: FLARE C18 MM, 4.6x33mm, 3.6μm
Column Temp: 45°C
Mobile Phase:
A: 50ml ACN + 950ml H₂O + 2.2g K₂PO₄·6H₂O
B: 1,000ml ACN
A:B 75/25
Flow Rate: 1.0ml/min
Injection: 2.0μl, ca. 0.2mg/ml in solvent A
Detection: UV at 230nm
Cannabinoids

- **Column Name:** FLARE C18 MM
- **Column Dimensions:** 4.6 x 33mm, 3.6 µm
- **HPLC System:** Agilent 1200
- **Injection Volume:** 1.0 µL
- **Detection:** UV - 280nm
- **Mobile Phase:** 500ml dioxane + 410ml H2O + 5ml acetic acid + 5ml EDA
- **Temp:** 65 °C
- **Analytes:**
 1. Cannabidiol (CBD)
 2. Cannabinol (CBN)
 3. ∆9-tetrahydrocannabinol (∆9-THC)
 4. ∆8-tetrahydrocannabinol (∆8-THC)

Avermectins

- **Column Name:** FLARE C18+
- **Column Dimensions:** 4.6 x 100 mm, 3.6µm (15889-4-2)
- **HPLC System:** Agilent 1200
- **Injection Volume:** 5.0 µL, ca. 0.2 mg/ml in MeOH
- **Detection:** UV at 244 nm
- **Flow Rate:** 1.0 ml/min
- **Solvents:**
 - A: 50 ml ACN, 100 ml MeOH, 850 ml H2O
 - B: MeOH
 - C: ACN
- **Gradient: Time (mins) %A %B %C
 0.00 80 10 10
 10.00 40 25 35
 10.01 80 10 10
 18.00 80 10 10 end
- **Temp:** 35 °C
Available Column Configurations

FLARE Wide Pore (WP) C18, 3.6μm, 250Å

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Column ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW36-21050</td>
<td>2.1mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FW36-21100</td>
<td>2.1mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FW36-21150</td>
<td>2.1mm</td>
<td>150mm</td>
</tr>
<tr>
<td>FW36-46033</td>
<td>4.6mm</td>
<td>33mm</td>
</tr>
<tr>
<td>FW36-46050</td>
<td>4.6mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FW36-46100</td>
<td>4.6mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FW36-46150</td>
<td>4.6mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>

Other dimensions are available on a custom basis. Support materials for UHPLC and prep applications are under development.

To order: email info@diamond-analytics.com or visit www.diamond-analytics.com

Summary Key Data Points

- Unique selectivity relative to silica
- pH stable from 1-13
- Temperature stable up to 100 °C
- Reproducible batch-to-batch and column-to-column
- High efficiencies
- Available in wide array of stocked column dimensions and customizable configurations
- LC-MS Compatible
- Compatible with 100% aqueous to 100% organic mobile phases
- Manufactured in-house using lean manufacturing methods and proprietary layer-by-layer processes
- Particles synthesized with 99.999% pure sp³ industrial nano diamonds
- All columns can operate on standard HPLC systems as well as on UHPLC systems for fast separations & high throughput
Available Column Configurations

FLARE C18 Mixed-Mode, 3.6µm, 120Å

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Column ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL36-21050</td>
<td>2.1mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FL36-21100</td>
<td>2.1mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FL36-21150</td>
<td>2.1mm</td>
<td>150mm</td>
</tr>
<tr>
<td>FL36-46030</td>
<td>4.6mm</td>
<td>33mm</td>
</tr>
<tr>
<td>FL36-46050</td>
<td>4.6mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FL36-46100</td>
<td>4.6mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FL36-46150</td>
<td>4.6mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>

FLARE C18+, 3.6µm, 120Å

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Column ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP36-21050</td>
<td>2.1mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FP36-21100</td>
<td>2.1mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FP36-21150</td>
<td>2.1mm</td>
<td>150mm</td>
</tr>
<tr>
<td>FP36-46030</td>
<td>4.6mm</td>
<td>33mm</td>
</tr>
<tr>
<td>FP36-46050</td>
<td>4.6mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FP36-46100</td>
<td>4.6mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FP36-46150</td>
<td>4.6mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>

FLARE HILIC, 3.6µm, 120Å

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Column ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FH36-21050</td>
<td>2.1mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FH36-21100</td>
<td>2.1mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FH36-21150</td>
<td>2.1mm</td>
<td>150mm</td>
</tr>
<tr>
<td>FH36-46030</td>
<td>4.6mm</td>
<td>33mm</td>
</tr>
<tr>
<td>FH36-46050</td>
<td>4.6mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FH36-46100</td>
<td>4.6mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FH36-46150</td>
<td>4.6mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>

FLARE Kit*, 3.6µm, 120Å

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Column ID</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FK36-21050</td>
<td>2.1mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FK36-21100</td>
<td>2.1mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FK36-21150</td>
<td>2.1mm</td>
<td>150mm</td>
</tr>
<tr>
<td>FK36-46030</td>
<td>4.6mm</td>
<td>33mm</td>
</tr>
<tr>
<td>FK36-46050</td>
<td>4.6mm</td>
<td>50mm</td>
</tr>
<tr>
<td>FK36-46100</td>
<td>4.6mm</td>
<td>100mm</td>
</tr>
<tr>
<td>FK36-46150</td>
<td>4.6mm</td>
<td>150mm</td>
</tr>
</tbody>
</table>

* Kit consists of one each of FLARE C18MM, FLARE C18+ and FLARE HILIC columns in the same dimensions.

Other dimensions are available on a custom basis. Support materials for UHPLC and Prep applications are under development.

2.1mm and 4.6mm ID guard columns available

To order: email info@diamond-analytics.com or visit www.diamond-analytics.com
Recent Select Papers and Patents

Publications

Patents

- Diamond Coating by Living Polymerization, Pat # 8,147,985

- Porous Composite Particulate Materials, Methods of Making and Using Same, and Related Apparatuses, Pat # CA 2725651.

- Reaction of Isocyanates and Acyl Halides with Hydroxyl Terminated Diamond for Novel HPLC/SPE Stationary Phases, Pat # 8,202,430.

- Separation Device and Chemical Reaction Apparatus made from Polycrystalline Diamond, Apparatuses including same such as Separation Apparatuses and Methods of Use, Pat # EP 2035823.

- Sonication for Distribution of Diamond-Based Particles, Pat # 8,658,039.

- Carbon Nanotube Scaffolding for x-ray windows, Pat #7,756,251.

- Thin Layer Chromatography Plates and Related Methods of Manufacture including Priming prior to Infiltration with Stationary Phase and/or Precursor Thereof, Pat # 8,702,984.

- Several other patents pending.

Contact Us

Contact our team today to see how we can help with your separation challenges.
P: 801-235-9001 | E: info@diamond-analytics.com | W: diamond-analytics.com